Three-Telescope Interferometry Allows Astrophysicists to observe how black holes are fueled

SCIENCE DAILY

This is an artist’s view of a dust torus surrounding the accretion disk and the central black hole in active galactic nuclei. CREDIT/NASA E/PO – Sonoma State University, Aurore Simonnet

By combining the light of three powerful infrared telescopes, an international research team has observed the active accretion phase of a supermassive black hole in the center of a galaxy tens of millions of light years away, a method that has yielded an unprecedented amount of data for such observations. The resolution at which they were able to observe this highly luminescent active galactic nucleus (AGN) has given them direct confirmation of how mass accretes onto black holes in centers of galaxies.

“This three-telescope interferometry is a major milestone toward directly imaging the growth phase of supermassive black holes,” said Sebastian Hoenig, a postdoctoral researcher at the UC Santa Barbara Department of Physics, and one of the astrophysicists who utilized this technique to observe the AGN at the center of galaxy NGC 3783. The observation was led by Gerd Weigelt, a director of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Science Daily for more